
Design of a Walkthrough System for Indoor Environments from Floor Plans

Bin Chan Hiu Ming Tse Wenping Wang

Department of Computer Science
The University of Hong Kong
Pokfulam Road, Hong Kong

[bchan,hmtse,wenping]@cs.hku.hk

Abstract
This paper is to share some experience in designing a
practical walkthrough system for indoor environments.
We discuss issues from the design of efficient utility
programs for building 3D models to the design of a
walkthrough engine. Our utility programs allow the
creation of the interior of a several storied building in a
few man-days. We also propose several rendering
speedup techniques implemented in our walkthrough
system. Tests have been carried out to bench mark the
amount of speedup brought about by different
techniques. One of these techniques, called dynamic
visibility, proves to be more efficient than existing
standard visility preprocessing methods.

1 Introduction

Walkthrough of architecture models finds
applications in previewing a new building before it is
built physically or in directory systems that guide
visitors to reach a particular location. Two main
problems in building a walkthrugh application are
modeling and real-time display. That is, how the 3D
model can easily be created, and how to display a
complex architecture model at real-time rate.

Modeling involves the creation of a building and
the placement of furniture and other decorative objects.
Althrough most commercially available CAD software
serves similar purposes, they are not flexible enough to
allow us to create openings on walls, such as doors and
windows. Since the input for building a walkthrough
system are 2D floor plans in our case, we developed a
program that converts the 2D floor plans into 3D
models and handles door and window openings in a
semi-automatic manner.

By rendering we refer to computing illumination
and generating a 2D view of a 3D scene at an interactive
rate. The radiosity method is well-known for global
illumination computation, and has been used for
preprocessing of some walkthrough applications.
However, we chose not to use it at this stage due to the
following reasons. Firstly, the radiosity method is
complicated to implement and time-consuming to apply,
especially for our model consisiting of several floors of

a large building. Secondly, the large number of polygons
that would be generated by the radiosity method is
prohibitive on the moderate geometry engine of our
median level graphics workstation. Representing the
results of radiosity computation in texture map is a
possible solution, but that would then increase the
demand on the limited and expensive texture memory
on our workstation. Hence, at this stage we choose to
use illumination textures to simulate the lighting effects
in the virtual environment. We also use texture mapping
to simulate some other lighting effects, such as specular
reflection. Satisfactory results have resulted from these
expedient treatments.

Rendering speedup techniques are the most
important issues in designing a walkthrough application,
since they strongly affect the frame rate and hence the
usefulness of the system. We have implemented and
tested a few standard techniques, such as the Potential
Visible Set method [4], runtime eye-to-object visibility,
and compared them with a new runtime visibility
computation technique: the dynamic visibility method.
Our tests show that the new visibility computation
method yields superior performance.

1.1 Overview

The virtual environment we built consists of two
floors of a building housing the Department of
Computer Science at the University of Hong Kong.
Figure 1 shows a typical scene captured from the
walkthrough engine.

This system was written in C and OpenGL to allow
Figure 1

maximum flexibility in incorporating new algorithmic
improvement at the low level of geometric processing.
The system can be divided into five parts, shown as
follows:

This paper is organized as follow. Section 2 is a
brief survey of related existing work. Section 3
discusses some issues about modeling. Section 4 is
about texture mapping for illumination. Section 5
describes the walkthrough engine and different speedup
techniques. Section 6 presents the benchmark results.
Section 7 contains the conclusion and comments on
future research directions.

2 Related Work

Airey et al. [3] and Sequin [4] built systems that
compute the potential visible set (PVS) to effectively
eliminate many hidden polygons in a densely occluded
environment. Greene, Kass and Miller[5] described a
system using hierarchical z-buffer to quickly cull
invisible polygons. However, since their algorithm
requires special hardware, it is not yet practical on
ordinary graphics workstations.

Recently, Zhang, Manocha, Hudson and Hoff [10]
proposed a hierarchical occlusion map algorithm similar
to the hierarchical z-buffer algorithm that requires no
special hardware but hardware texture mapping only. It
chooses some objects as occluders and tries to ignore
those objects behind them. The method is efficient if
there are many objects behind the occluders. That is,
occluders should be sufficiently big to block many
objects, but it is usually not easy to choose such
occluders for indoor architecture models; the most
effective occluders in such models are walls. But if
walls are chosen as occluders, then everything in the
room still needs to be displayed. In this case, the method

is reduced to the PVS algorithm.
Another approach is image based rendering that

uses texture mapping extensively. Texture mapping,
generated at runtime, can be used to replace
complicated geometry. These textures are usually not
updated until adsolutely necessary. Systems like
Microsoft’s Talisman [9] are based this approach.
However, its implementation again requires special
image processing hardware.

Some other systems explore Level of Details (LOD)
techniques for display speedup. In LOD different
models exist for the same object, and are used at
different distances from the viewer. Currently, we
concentrate on the study of visibility culling algorithms,
so LOD is not considered in this paper.

3 Modeling

The data needed for building our models are floor
plans and some height information like ceiling height,
door height and windows positions. It begins with
AutoCAD 2D DXF files of floor plans. First the files
have to be cleaned up because there is some information,
such as sewage pipes and electric wiring, that is not
needed by the walkthrough system. Only the
information about walls, doors and windows is extracted
and stored in 2D DXF files.

The floor plans are divided in cells loosely based
on the division of rooms. In order to speed up the
subsequent operations like 3D extrusion, furniture
placement and PVS calculations, rooms are not further
subdivided. The subdivision process is done manually,
since automatic algorithms, such as BSP, usually do not
provide a subdivision which fits room partitions very
well. Figure 3 shows the way a part of a floor is divided
into cells.

All line segments intersecting the cell boundaries
are trimmed so all those belonging to a cell must lie
entirely inside the cell. Thus the extruded 3D models
have the property that all the polygons of a cell lie
entirely inside the 3D bounding rectangular block of the
cell. Openings on the boundaries between cells are
marked as portals. These cell boundaries and portals are
drawn directly in AutoCAD and exported as DXF files

Figure 3

Cell1 Cell2 Cell3

Cell4

2D Floor Plan

3D Models Generation

Object Placer

Walkthrough Engine

PVS Computation

Furniture

Wall models

Wall models
with furniture

positions

PVS Data

Figure 2

Illumination Mappings

Walls with textures

as well and later converted to the internal cell and portal
database files.

3.1 2D to 3D Extrusion

The DXF files of the floor plan are used as the
input to the 2D-to-3D converter. The converter first
triangulates floors and ceilings; the ceilings have the
same triangulation as the floors. The walls are
truangulated in a special way. All the resulting triangles
are right angle triangles. As shown in Figure 4.

The number of triangles in such a triangulation
may not be minimum. However, there are two reasons
for keeping all triangles being right angle triangles. First,
the triangles thus generated can easily be combined into
rectangles so quads drawing calls can be used, instead
of triangles drawing calls. Note that one quad drawing
call can save color calculations for two vertices when
compared with two triangle drawing calls. Second, since
texture mapping is used to simulate the illumination
effect, irregular triangulation would affect the ease of
specifying texture mapping. This will be explained in
detail in the next section.

Figure 4 shows the 2D to 3D conversion. In figure 4a the ceiling
and the floor are triangulated. In figure 4b, ceiling and floor are
not shown, but only the wall directly extruded from the 2D
boundary (The opening is the door position). Figure 4c is same
as figure 4b except that the wall above the door is corrected.
Figure 4d shows the final triangulation.

The resulting model is a connected surface with
openings only on doors and windows. Note that there
are no T joints between triangles on walls, except along
the boundary between walls and floors or ceilings.
Those T joints can be ignored since walls and floors or
ceilings do not lie on the same plane, and they usually
have different materials settings or texture mappings, so
the problem of unmatched colors between adjacent

triangles near those T joints is not an issue. The
extrusion operation is done cell by cell since different
cells may have different heights. The heights of ceilings,
windows and door frames are entered manually since
they are not available in the input 2D DXF files.

3.2 Objects Placement

After 3D wall models have been generated, they
are passed to the object placing program, which is used
to place funiture and other objects interactively in the
environment. There is a library of standard furniture for
the user to select from and put in the room. A gravity
based model is used in the object placement program to
facilitate the process. A simple collision detection
algorithm is used to check collision between the
bounding boxes of objects. The direction of the
gravitation can be set to be along the three main axes to
make it easy to align an object against the wall. After all
objects have been placed, the object IDs and their
transformation matrices are stored in a cell file.

4 Texture Mapping for Illumination

Gouraud shading is done by graphics hardware
when displaying the 3D scene. To make the scene look
more physically realistic, texture mapping is used to
simulate two special and subtle illumination effects: soft
shadows and the reflection of light sources on the floor.

4.1 Soft Shadows

Soft shadows on a wall cast by light sources on the
ceiling usually take parabolic shapes. Therefore, a
shadow map of parabolic shape is used to define a
illumination texture on the wall.

Figure 5a is the original texture map with a parabola shape. 5b is
the gaussian blurred image of 5a.

The illumination texture is created by heavily
blurring an image containing a parabolic shape. Figure
5b shows the texture map generated from Figure 5a.

In the case where several lights are situated close to
each other, the bright regions of two adjacent lights may
overlap each other. To handle this case two more
textures are created as shown in Figure 6. There are

Figure 4

a b

c d

Figure 5

a b

altogether three different kinds of textures to simulate
the most common illumination effects on a wall.

Figure 6a is the texture used for a light with other lights at both
sides. 6b is the texture used when there is a light at one side. 6c
is the effect of the combined texture for 3 closely situated lights.

The shadow texture placement is done
automatically by analyzing the positions of lights placed
by the object placer. Each light in a cell is checked to
see whether there is a wall near enough; a distance
threshold of one meter is set. If a wall is more than one
meter away from the light, it is assumed that the light
has no special illumination effect on that wall and only
hardware Gouraud shading is used. If the distance is
within one meter, the texture maps is then centered at
the nearest point of that wall from the light. The vertical
position is determined by the distance of the wall from
the light. Usually a big wall formed by two big triangles
may have more than one bright regions cast by multiple
light sources. Since it is not possible to map more than
one kind of texture on it or to map one texture at two or
more arbitrary positions on the triangle, the big triangles
must be subdivided. Figure 7 shows how the triangles
are subdivided.

Figures 7a,c show the original triangulation and with 1 and 3
light sources respectively. Figures 7b,d show the triangulation
for the illumination texture mapping for a and c, respectively

If the distance between two light sources is smaller
than a preset threshold of 2 meters, the bright regions
they cast on the wall are assumed to have some
overlapping. Thus the subdivision is done as shown in
Figure 7d. The boundary between two textures is chosen
to be the equi-distance line on the wall next to the two
adjacent light sources.

The main advantage of using texture mapping to
simulate illumination effects as described above is that
very few texture maps need to be prepared and stored in
texture memory for a complex indoor enviroment. This
is in contrast with the radiosity approach, in which
different walls usually have different illumination
distributions and so need different texture maps; this
easily makes the number of different texture maps
beyond the capability of texture memory. Our texture
map approach also produces “reasonable” soft shadows
in the sense that bright regions on a wall appear at
positions where they are expected, though brightness
and shapes of the regions are not as physically accurate
as the results of the radiosity method.

Figure 8 shows the effect of illumination by illumination textures
mapping. Note that there are only three kinds of illumination
textures.

4.2 The Reflection Map

Texture mapping is also used to simulate the effect
of specular reflection of a semi-reflective rough floor. It
is observed that such a floor usually produces
reflections of bright objects and the reflections are so
blurred that they look quite round. Since specular
reflection moves with the user’s viewpoint, the texture
cannot be directly mapped onto the model. Instead, a
texture, called reflection map, is mapped onto a floating
rectangle above the ground and moves with the
viewpoint to simulate the specular reflection of a light
source on the ceiling.

Figure 6

a b

c

Figure 7

ba

dc

Figure 8

Figure 9 shows a reflection map’s alpha component (white for
opacity).

The reflection map used is a transparent texture
map, with its alpha component shown in Figure 9 (white
for opacity). The coordinates of light sources are used to
determine the coordinates of the floating reflection
maps, through some simple transformations.

5 The Walkthrough Engine

The walkthrough engine refers to the program that
displays the virtual environment in an interactive
manner. A key to displaying a complex model in real-
time is to quickly eliminate invisible polygons so to
reduce the burden on graphics pipelines. In this section
we discuss a few existing speedup techniques, as well as
some new ones, implemented in the walkthrough system.
To understand the performance gain of these speedup
techniques, benchmarking tests have been carried out,
and we will present the results in the next section.

5.1 Potential Visible Set Precomputation

We have used the standard PVS algorithm [4] as a
primary speedup technique. This algorithm has two
levels: cell-to-cell visibility and cell-to-object visibility.
Cell-to-cell visibility records the cells that are
potentially visible to a cell in which the viewer is in.
Cell-to-object visibility further records the potential
visible objects in those visible cells because usually not
all of the objects in those visible cells are visible to the
viewer. This method has been used successfully in many
applications, and has also made a big difference in our
system.

5.2 Runtime Eye-to-Object visibility

The pre-computed PVS data can help eliminate
most of the triangles. However, there are objects that are
not visible but are still rendered by the hardware after
PVS processing (see Figure 11). That is because the
PVS data is recorded at the cell level, the visibility at
different positions in the same cell cannot be told from
the PVS data. Thus, some runtime calculations are
needed to find out which objects are not visible outside
the cell. At runtime, the bounding boxes of objects from
the precomputed potentially visible set are used to test
against the 2D view frustum for tighter visibility
computation. We note that some invisible objects are
still not eliminated even after this step of eye-to-object
visibility computation. See Figure 11

Figure 11 shows the case where some objects cannot be
eliminated by the PVS information. Cell B is the adjacent cell of
cell A, where the viewer is in. Cell B and all objects in it are
marked potentially visible. Object 3 is reported to be potentially
visible even after the view frustum test.

5.3 Dynamic Visibility Computation

Dynamic visibility computation refers to a new
method for fast and tight visibility computation, which
provides an alternative to the PVS algorithm. It is
termed dynamic visibility because it computes cell-to-
cell visibility information at runtime rather than offline
as preprocessing. The advantages of this new method
are: 1) it is not a preprocessing scheme, so does not
consume extra memory for holding visibility
information as required by the PVS algorithm; 2) it is
easy to implement; 3) it yields tighter visibility
information and leads to shorter overall rendering time
than the PVS method. Nontheless, the dynamic
visibility method is suitable only for indoor
environments or similar densely occluded environments.

Dynamic visibility is computed by recursively
checking the intersection between the portals and the
view frustum. The view frustum will be narrowed down
in new visible cells as the checking goes down the
recursion.

Cell A

Cell B

Figure 11

1

23
1.75m

3m

Figure 10

Figure 9

Figure 12 shows how to find the visible cells via portal A, by
continuously narrowing the view angle through the portals, and
stops when no more portal intersects the view region.

Testing the intersection of a portal with the view
frustum can be treated as testing the intersection of two
2D sector regions with their apices both at the view
point. Each test is extremely efficient, involving only
four multiplications, two additions and two comparisons.
The number of portals in one cell is usually not large,
typically one to four. The number of portals in portal
sequences is bounded by the maximum number of cells
across a building. Therefore, the number of testings
done per frame is not a big burden.

By comparing the sector formed from the view
point to the bounding box of an object in an visible cell
and the view frustum, we can determine the visibility of
the object to the viewpoin. This test differs from the
eye-to-object visibility mentioned in section 5.3 in the
way that the number of objects tested in dynamic
visibilty is less. Consider Figure 12. If objects from the
PVS are to be tested for eye-to-object visibilty, then
some objects in the cell below portal C will be tested.
However, in the dynamic visibility method, objects in
the cell below portal C are not considered in eye-to-cell
testing step, because portal C is not visible to the current
viewpoint.

The dynamic visibility method provides more
accurate visibility information than the PVS algorithm
because the former is done at runtime, and is fine tuned
to return tighter visibility information with respect to the
viewpoint. Since no pre-computation is involved, it can
be used in dynamic virtual environments but must still
be a densely occluded environment for maximum
efficiency. Without the need for large memory as
required by the PVS data, the dynamic visibility method
is more suitable for walkthrough system on the web.

5.4 Software Vertex Color Calculations

Conventionally, in an interactive display of a 3D
polygonal model with Gouraud shading, vertex colors
are computed by passing normal vectors at the vertices
to some primitive drawing functions, which are
OpenGL functions in our case. By software vertex color
calculations we mean that the vertex colors of a polygon
are calculated by the walkthrough engine at runtime,
instead of OpenGL functions. In this way, the colors of
all vertices can be found before starting the graphics
pipeline. For the repeated vertices, only their colors are
passed to graphics hardware, so no lighting calculation
by graphics hardware is needed and only the color
interpolating and texture mapping functions of graphics
hardware are utilized. This speedup technique is
motivated by the observation that many vertices of an
object are repeated in more than one, often up to six,
triangles. When adjacent triangles cannot be specially
arranged to take the advantage of fast triangle drawing
functions, such as triangle_strip(), the vertex colors of
these triangles are normally calculated more than once
by graphics hardware in one display cycle. But they are
computedonly once by walkthrough engine per display
cycle.

To make the software computation of vertex color
more efficient, we choose to compute the diffuse
reflection only, and this assumption turns out not to
adversely affect the illumination result as might be
expected, since most indoor objects consist of
predominantly diffuse surfaces. Consider the process of
using graphics lighting hardware that handles diffuse
and specular reflection and many other lighting effects.
Even when the specular terms of most objects are set to
zero, graphics hardware still has to calculate the
specular reflection, which costs some extra time. As a
comparison, in software computation only the diffuse
term in the lighting model is calculated, so the
computation is simpler and faster. Besides, by using the
software approach, we can define many light sources
regardless the limitation by OpenGL implementation;
OpenGL supports only up to 8 light sources, for
instance.

One extra benefit of the software vertex color
calculation is efficient backface culling. The dot product
of the view vector and a polygon normal must be found
in calculating its vertex color. This piece of information
is used directly to determine the visibility of that
polygon. This further releases graphics hardware of the
work on backface culling.

6 Benchmark Results

The data set used is a model of two floors of Chow

Figure 12

Portal A

Portal B

Portal C

Yei Ching Building housing the Department of
Computer Science at the University of Hong Kong. The
whole model, including furniture, consists of 93628
triangles. The platform used for running the
walkthrough system is an SGI Maximum IMPACT
workstation with R10000 CPU, 192MB main memory

and 4MB texture memory. The table below shows the
average frame rate and the number of triangles actually
rendered during a walkthrough of a guided path with
1409 frames, using different combinations of speedup
techniques.

Guided Tour Benchmark results (1409 frames)
PVS Cell to Cell No Yes No Yes Yes Yes No Yes No Yes
PVS Cell to objects No No No Yes No Yes No No Yes Yes
Eye to objects No No Yes No Yes Yes X X X X
Dynamic Visibility No No No No No No Yes Yes Yes Yes

Average # of cells 11.79 8.50 8.58 8.50 7.75 7.75 5.87 5.87 5.87 5.87
Average # of objects 168.78 118.21 42.29 49.69 38.77 33.78 28.61 28.61 28.61 28.61

Average # of primitives 13326.28 9273.20 3714.11 3905.07 3369.58 2780.27 2266.96 2266.96 2266.96 2266.96
Average # of textures 415.77 310.99 226.12 235.24 208.74 206.65 165.10 165.10 165.10 165.10
Average time in ms 330359 251193 153384 153811 144558 130608 109060 108999 108744 108821

Average fps 4.27 5.61 9.19 9.16 9.75 10.79 12.92 12.93 12.96 12.95
Speedup 0% 32% 115% 115% 129% 153% 203% 203% 204% 204%

X means not care. Dynamic visibility

Table 1 shows the comparison between the various polygon culling techniques under the worst condition, that is, all doors are opened.
The average numbers are average numbers per frame. The average number of objects is the smallest when the dynamic visibility is
turned on. These comparisons are done without backface culling, using OpenGL lighting.

Guided Tour Benchmark results (1409 frames)
PVS Cell to Cell No Yes No Yes Yes Yes No Yes No Yes
PVS Cell to objects No No No Yes No Yes No No Yes Yes
Eye to objects No No Yes No Yes Yes X X X X
Dynamic Visibility No No No No No No Yes Yes Yes Yes

Average # of cells 11.79 2.10 8.58 2.10 2.05 2.05 1.81 1.81 1.81 1.81
Average # of objects 168.78 13.00 42.33 12.23 11.97 11.95 11.63 11.63 11.63 11.63

Average # of primitives 13326.28 1037.06 3717.62 949.89 940.79 939.17 912.60 912.60 912.60 912.60
Average # of textures 415.77 69.53 226.12 68.32 66.98 66.96 64.47 64.47 64.47 64.47
Average time in ms 330359 60501 153092 58535 58326 58317 56885 56880 56812 56819

Average fps 4.27 23.29 9.20 24.07 24.16 24.16 24.77 24.77 24.80 24.80
Speedup 0% 446% 116% 464% 466% 466% 481% 481% 481% 481%

X means not care. Dynamic visibility

Table 2 shows the comparison between the various polygon culling techniques under the best condition, that is, most of the doors are
closed. The average numbers are average numbers per frame. The average number of objects is the smallest when the dynamic
visibility is turned on. These comparisons are done without backface culling, using OpenGL lighting.

Guided Tour Benchmark results (1409 frames)
Quad/Tri/Tri-strip Tri Quad Tri-strip Tri Tri Tri Tri
Lighting Hardware Hardware Hardware Software Hardware Hardware Hardware
Pre-transform Hardware Hardware Hardware Hardware Software Hardware Hardware
Back face culling No No No No No OpenGL Software

Average # of cells 48.00 48.00 48.00 48.00 48.00 48.00 48.00
Average # of objects 1231.00 1231.00 1231.00 1231.00 1231.00 1231.00 1231.00

Average # of primitives 93628.00 54320.00 54320.00 93628.00 93628.00 N/A 46153.45
Average # of textures 2197.00 1146.00 1146.00 2197.00 2197.00 N/A 1754.21
Average time in ms 1243416 798527 787947 654927 1195299 1223720 668355

Average fps 1.13 1.76 1.79 2.15 1.18 1.15 2.11
Speedup 0% 56% 58% 90% 4% 2% 86%

Table 3 shows the comparison between software and hardware approaches under the worst condition, that is, no PVS, no dynamic
visibility, not even view frustum culling. Note that OpenGL backface culling is not very efficient. This may be due to the fact that a
triangle cannot be detected to be front or back facing in OpenGL until the third vertex is passed to it. By the time the third vertex is
passed, the graphics pipeline has already started to process the first two vertices’ information. If that is a back face, the pipeline still has
to be flushed.

Guided Tour #2 Slowest Fastest for the best case Fastest for the worst case
PVS Cell to cell No Yes Yes
PVS Cell to objects No Yes Yes
Eye to objects No X X
Dynamic Visibility No Yes Yes
Quad/Tri/Tri-strip Tri Tri-strip Tri-strip
Lighting *** Hardware Software Software
Pre-Transform Hardware Software Software
Back face culling No Software Software
All portals status Open Closed Opened

Average # of cells 11.79 1.81 5.87
Average # of objects 168.78 11.63 28.61

Average # of primitives 13326.28 321.51 715.37
Average # of textures 415.77 33.48 84.41
Average time in ms 330359 41220 62107

Average fps 4.27 34.18 22.69
Speedup 0% 701% 432%

Table 4 shows the fastest speedups taken for the best and the worst cases, respectively.

With the benchmark results, we try to find the
relative proportions of time that different processes take.
The following assumptions are made:
1. The total time can be divided into two parts:

calculation time and rendering time.
2. The rendering time is proportional to the number

of primitives rendered.
3. When no speedup technique is used, the time taken

is the pure rendering time. That is, there is no
calculation time. The time in column 1 of Table 3
is therefore the pure hardware rendering time of
1409 frames of 93628 triangles.
From Table 3 we find that the speedup by using

software lighting is about 90%. The hardware uses at
least 47% of the time to do the lighting and the rest is
for rasterization and texture mapping, etc. The fact that
hardware takes such a long time to compute the lighting
has not been expected, but this agrees with the data in
columns 2 and 3 of Table 3 where quad and triangle
strips are used. Quads and triangle strips drawing can
save one third of the vertex color calculations; there are
less primitives to draw if quads or triangle strips are
used instead of triangles. This results in less graphics
pipeline startup and shut down, and hence less overhead.
Table 1 and 2 show that on average the dynamic
visibility method outperform the PVS in all situations.

With the combination of various speedup
techniques, our system can achieve up to 701% speedup.
The average frame rate can reach 34.18 frames per
second, compared with 4.27 frames with no speedup
technique being used.

7 Conclusion and Future Work

We have described a practical walkthrough system
of architecture model and discussed some issues in
modeling, illuminations and display speedup techniques.
The paper also gives a benchmark of performance gains
of different techniques for display speedup.

The new potential visibility determination we use
can cull on average 98% of the polygons of the
environment. We observe that now the efficiency of
hardware rendering is no longer the most important
issue that stops us from further improving the frame rate.
The frame rate is now limited by the speed of polygon
culling techniques and software lighting. Further
eliminating polygons seems to have no more effect on
improving the frame rate

Furtherwork is to be done on fast polygon culling
techniques. PVS is a good method in that it requires no
runtime computation but its culling is not tight enough.
Some refinement like subdivision of cells into smaller
cells may help increase its accuracy.

Dynamic visibility computation is the approach at
the other extreme. It tends to uses more runtime

computation than the PVS approach. Althrough its
accuracy makes it out-perform the PVS, the amount of
computation required is a hindrance to further
increasing the frame rate, especially when the number
of objects is huge. From the data shown in Table 2, the
frame rate is around 24 even if there are less than one
thousand triangles to render per frame. This is much
below the maximum capability of our graphics
hardware. Therefore, much of the time has been used on
computation by CPU and this keeps graphics hardware
idling and waiting for CPU to complete visibility
computation, rather than rendering more polygons.
More work should be done to increase the speed of
dynamic visibility computation.

Acknowledgments
We wouldlike to thank K.S.Cheng, S.M. Lee, Y.

Cheung, S.K. Ng, C.Y. Lau, K.L. Ko and M.L. Lam for
the modeling and coding of the system. We are grateful
to the Estate Office of the University of Hong Kong for
providing us with the floor plans of Chow Yei Ching
Building.

References
[1] Hujun Bao, Shang Fu and Qunsheng Peng, “Accelerated

walkthrough of complex scenes based on visibility
culling and image-based rendering”, Proceedings of CAD
and Graphics’97, pp.75-80.

[2] James D. Foley, Andries van Dam, Steven K. Feiner and
John F. Hughes, Computer Graphics: Principles and
Practice. Addison Wesley 1990.

[3] John M Airey, “Towards image realism with interactive
update rates in complex virtual building environments.
ACM SIGGRAPH Special Issue on 1990 Symposium on
Interactive 3D Graphics.

[4] S. Teller and C. Sequin, “Visibility preprocessing for
interactive walkthroughs”, Computer Graphics, Vol. 25,
No.4. pp.61-69, 1991.

[5] N. Greene M. Kass and G. Miller “Hierarchical z-buffer
visibility”, Computer Graphics Proceedings August 1993,
pp.231-238.

[6] N. Greene, “Hierarchical polygon tiling with coverage
masks”, ACM SIGGRAPH ’96, pp.65-74.

[7] D. Luebke and C. Georges “Portals and mirrors: simple,
fast evaluation of potentially visible set” April 1995
Symposium on Interactive 3D Graphics, pp.105-106.

[8] J. Shade, D Lischinski, D. Salesin, T. DeRose and J.
Snyder, “Hierarchical image caching for accelerated
walkthroughs of complex environments”, ACM
SIGGRAPH ’96, pp.75-82.

[9] J. Torborg and J. Kajiya, “Talisman: commodity realtime
3D graphics for the PC”, ACM SIGGRAPH ’97, pp.353-
363.

[10] H. Zhang, D. Manocha, T. Hudson and K.E. Hoff,
“Visibility culling using hierarchical occlusion maps”,
ACM SIGGRAPH ’97, pp.77-88.

